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A novel method of three-dimensional electrophoretic NMR corre-
lation spectroscopy (3D EP-COSY) has been proposed, developed,
and implemented. It has a demonstrated potential of facilitating
simultaneous structural assignments of multiple proteins in mixtures.
The principle is to add a pulsed DC electric field that introduces a
new dimension of electrophoretic flow, in which resonances of differ-
ent molecules can be separated by their electrophoretic migration
rates without physical separation. As a result, two COSY spectra
were simultaneously obtained in a single 3D EP-COSY experiment
from a mixture of 150 mM L-aspartic acid and 148 mM 4,9-dioxa-
,12-dodecanediamine with concurrent resolution of their chemical
hifts and J-coupling constants. This approach creates a new horizon
f multidimensional electrophoretic NMR. The technical advance
pens doors for structure characterization of complex protein systems
nd protein interactions, which are at the basis of biochemical mech-
nisms and the phenomena of living systems. © 2000 Academic Press

The multidimensional nuclear magnetic resonance (NMR
correlation spectroscopy (COSY) (1–4) and nuclear Overhaus
spectroscopy (NOESY) (5–9) are extremely powerful in seque
tial and stereospecific structural assignments of proteins (10–13).
These NMR spectroscopy methods can be used not on
determine protein structures at a resolution comparable to
crystallography, but also to provide information on protein
namics in aqueous environments. However, due to severe
overlap, the conventional NMR methods have difficulties in c
acterizing structures or structural changes of multiple pr
components in biochemical reactions. To solve this problem
have proposed the multidimensional electrophoretic N
(ENMR) spectroscopy (14), which separates NMR resonance

ixed proteins by electrophoretic mobilities. Thus, NMR spe
f different proteins can be simultaneously obtained in an is
ic mixture without physical separation of the proteins.
ethod was validated in a 2D ENMR experiment (15–34), which
roduced 1D NMR spectra of bovine serum albumin (BSA
Da) and ubiquitin (8.6 kDa) mixed in D2O (14). In this paper, w

1 Some of the preliminary results were reported in the 41th Experim
uclear Magnetic Resonance Conference (ENC), Asilomar, CA,
–14, 2000.

2 To whom correspondence should be addressed at: Sloan-Kettering In
for Cancer Research, Medical Physics Department, 1275 York Avenue
York, NY 10021. Fax: (212) 717-3676.
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report the results of a three-dimensional ENMR study, usin
electrophoretic correlation spectroscopy (EP-COSY) as an e
ple. COSY spectra ofL-aspartic acid and 4,9-dioxa-1,12-do
canediamine were simultaneously obtained, permitting concu
measurement of their structural parameters in the form of c
ical shifts andJ-coupling constants.

The 3D EP-COSY method was developed based on
OSY pulse sequence (Fig. 1). An electric field pulse drov
lectrophoretic flow of ionic species, and a pair of pulsed m
etic field gradients labeled the spin locations and selecte
pin coherence transfer pathways. Spin chemical shift evolu
ndJ-couplings in the evolution period (t1) and detection perio

(t2) generated the COSY type of chemical shift correlations in
first two dimensions. The electrophoretic motion of molec
modulated the COSY resonances as the electric field was ste
increased in the third dimension. In the spin density matrix
culation, the electrophoretic migration of molecules can be tr
as an independent event, sequential to the RF spin rotation
the spin evolutions under chemical shift and spin coupling te
since the Hamiltonian of molecular motion commutes with
Hamiltonian of internal spin dynamics. In the rotating frame
latter can be expressed asH 5 (v1 1 ggz)I1z 1 (v2 1 ggz)I2z 1
2pJI1zI2z. Hence, for a weakly coupled two-spin system (I1 5 I2 5
1
2 anduv1 2 v2u $ u2pJu), the final spin density matrix (s) of the
3D EP-COSY sequence are the product of the spin density m
of the conventional 2D COSY experiment and a cosine fa
cos(KmEdcD), that describes the electrophoretic modulation o
COSY resonances:

s~t1, t2! 5 i /4H I 1
2exp@iv1t2 2 iv1~t1 1 D!#

3 cos~pJt2!cos@pJ~t1 1 D!#

1
1

2
I 2

2exp@iv2t2 2 iv1~t1 1 D!#

3 sin~pJt2!sin@pJ~t1 1 D!#J
3 exp@2i ~f1 2 2f2!#

3 expF2DK 2D 2
t1 1 DGcos~KmEdcD!, 3 @1#

al
il

ute
w

T2
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where parameterK 5 ggd is a function of the gyromagnetic ra
of the nucleus (g), the amplitude (g), and duration (d) of the
magnetic field gradient pulses. The amplitude of the electric
Edc 5 Ie/(kA), is determined by the electric current (Ie), the
solution conductivity (k), and the cross-sectional area (A) of the
U-shape ENMR sample cell.D is the molecular diffusion coeffi
cient andT2 the spin–spin relaxation time. The electrophor
cosinusoidal modulation frequency is a function of the ele
field, the magnetic field gradients, and the electrophoretic mo
(m). Since the ENMR signal vs current curves was truncat
direct Fourier transformation is not appropriate. Fittings to
cosine curves were performed to obtain the electrophoretic
lation frequencies for different molecules. The truncated co
curves were subsequently extended to have 256 data points
these frequencies before the third Fourier transformation. In
way, the COSY resonances of molecules {i, i 5 1, 2, 3 . . . }

igrating at different electrophoretic mobilities were dis
uished and displayed at different frequencies {ni} in the third

dimension of electrophoretic flow velocity, whereni 5 6(KI dD/
2pkA)mi and I d is the increment of the applied DC elec
urrent. Note that increasing the electric field at the con
radient amplitude and interpulse delays avoided signal d
ue to molecular diffusion and spin relaxation (18). The linewidth

in the third dimension was determined by a 90° phase sh
sinebell squared window function applied to the extended c
curves before Fourier transformation.

To demonstrate the concept of 3D ENMR, we acquired
EP-COSY data matrix (2563 156 3 28) from a solution
mixture containing 150 mML-aspartic acid and 148 mM 4,

3 Only terms from spin 1 are included; terms from the second spin c
btained by exchanging subscripts 1 and 2.

FIG. 1. The 3D EP-COSY pulse sequence and phase cycling procedu
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dioxa-1,12-dodecanediamine in D2O. The experiment was pe-
ormed on a Bruker AM 500 NMR spectrometer equipped
n actively shielded magnetic field gradient in thez-axis. The

electric field was generated from an electric field/grad
driver from Digital Specialties (maximum output voltage5 1
kV). Capillary array ENMR (CA-ENMR) sample cells (35)
were used uncoated after treatment with 1 M HCl, deionized
water, and 1 M NaOH. The detected migration rates
L-aspartic acid and 4,9-dioxa-1,12-dodecanediamine
1.6 3 1024 and 2.03 1024 cm2 z V21 z s21, respectively
resulting from their electrophoretic motion and the bulk e
troosmotic flow of the solution. Because of the small capil
diameter, the electroosmotic velocity distribution caused
resolution reduction in the flow dimension. Twenty-ei
COSY spectra, each containing resonances from both m
cules, were obtained at differentEdc incrementing from 0 t
24.5 V z cm21. Two electrophoretic cosinusoidal oscillat

be

FIG. 2. Two electrophoretic oscillation frequencies from the 3D
COSY resonances of (a)L-aspartic acid (150 mM) and (b) 4,9-dioxa-1,

odecanediamine (148 mM) in D2O. The solution conductivity (k) was 5.82
S z cm21. The data matrix was acquired using an eight-bundle CA-EN

sample cell (250mm). The electric current was increased from 0 to 0.56
in 28 steps (I d 5 0.02 mA). The two gradient pulses had the same ampli
( g 5 304.5 mTz m21) and duration (d 5 1 ms). Other parameters were:td 5

01.5 ms,D 5 600.0 ms, NS5 16,TR 5 2s,t 1 5 5 to 30.264 ms withDt 1 5
0.194 ms, andT 5 258C.

.
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FIG. 3. (a) Spectroscopic separation of COSY planes of (A) 4,9-dioxa-1,12-dodecanediamine (148 mM) and (B)L-aspartic acid (150 mM) in a 3D EP-COS
atrix. Using the cosinusoidal oscillation frequencies that were scaled up 100 times, the truncated oscillation curves were extended from 28 to 25ata points
efore the third Fourier transformation. (Signals were folded in the flow dimension.) Superposition of the component 2D-COSY spectra (b and c) gae same
pectral resonance pattern of a double-quantum-filtered (DQF) COSY experiment (2, 37) (d). The DQF-COSY data was acquired from a mixture solutio

L-aspartic acid (100 mM) and 4,9-dioxa-1,12-dodecanediamine (100 mM) in D2O on a Bruker DMX 500 spectrometer.
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frequencies were observed that differentiated the COSY
nances ofL-aspartic acid and 4,9-dioxa-1,12-dodecanedia
(Figs. 2a and 2b). In the 3D EP-COSY matrix (Fig. 3a),
chemical shifts andJ-coupling constants can be measured
he two molecules in the separated COSY planes (Figs. 3
c). Note that the electrophoretic mobilities ofL-aspartic aci

and 4,9-dioxa-1,12-dodecanediamine are opposite in sig
numerically close in magnitude, as measured with methy
lulose-coated CA-ENMR tubes (36). Satisfactory signal res
ution was achieved in the flow dimension due to the electr

otic effect. Obviously, the 3D EP-COSY can be used to
ut individual COSY components of mixed molecules
imultaneous structural assignments, a formidable task fo
ein mixtures using conventional COSY methods becau
evere signal overlap (Fig. 3d). ENMR data of higher res
ion have been obtained with our newly developed EN
ystem. The results will be published elsewhere.
In conclusion, we have separated homonuclear C

pectra of two molecules in their isotropic solution mixt
sing the demonstrated 3D EP-COSY method. This pr
le is applicable to other types ofnD-ENMR for simulta-
eous structure determination of multiple proteins or pro
onformations. Solutions of high ionic strength were ex
ned using CA-ENMR sample cells, permitting ENMR e
eriments of proteins in high-salt biological buffer soluti
35). Thus, new investigations of protein interactions
ossible usingnD-ENMR to obtain detailed three-dime
ional structure mapping of the interacting proteins. T
tructural information is mostly missing in the literat
ecause of difficulties in distinguishing signals from diff
nt macromolecules coexisting in solution. Our new te
ology combines two powerful techniques— electrophor
nd NMR—to permit structural investigations, among o
rs, of protein folding and aggregations in solution, as
s biological signaling processes that consist of esse
echanisms of living organisms.
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